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Subdiffusion and localization in the one-dimensional trap model

E. M. Bertin and J.-P. Bouchaud
Commissariat a` l’Énergie Atomique, Service de Physique de l’E´ tat Condense´, 91191 Gif-sur-Yvette Cedex, France

~Received 23 October 2002; published 27 February 2003!

We study a one-dimensional generalization of the exponential trap model using both numerical simulations
and analytical approximations. We obtain the asymptotic shape of the average diffusion front in the subdiffu-
sive phase. Our central result concerns the localization properties. We find the dynamical participation ratios to
be finite, but different from their equilibrium counterparts. Therefore, the idea of a partial equilibrium within
the limited region of space explored by the walk is not exact, even for long times where each site is visited a
very large number of times. We discuss the physical origin of this discrepancy, and characterize the full
distribution of dynamical weights. We also study two different two-time correlation functions, which exhibit
different aging properties: one is ‘‘sub aging’’ whereas the other one shows ‘‘full aging,’’ therefore, two
diverging time scales appear in this model. We give intuitive arguments and simple analytical approximations
that account for these differences, and obtain new predictions for the asymptotic~short-time and long-time!
behavior of the scaling functions. Finally, we discuss the issue of multiple time scalings in this model.
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I. INTRODUCTION

A lot of efforts have been devoted to the theoretical stu
of aging phenomena in the past decades@1–3#. Spin glass
models, which exhibit a very rich phenomenology, have b
widely studied theoretically both using analytical techniqu
for the mean field models, or by numerical simulations in
finite dimensional cases. Besides these microscopic
models, a simpler but phenomenological picture, the ‘‘tr
model,’’ has been proposed in order to describe the ph
space dynamics in a coarse-grained manner@4#. This model
seems to capture, at least qualitatively, some of the phy
involved in the aging dynamics of several systems bey
spin glasses, such as fragile glasses@5–7#, soft glassy mate-
rials @8,9#, granular materials@10#, pinning of extended de
fects ~such as domain walls, vortices, etc.! @11#. This trap
model has been studied mainly in its fully connected~or
‘‘mean field’’! version @12–14#, which has recently been
shown to describe exactly the long-time dynamics of
random energy model when the distribution of trap depth
exponential@15#. This version of the mean field model a
ready exhibits a number of interesting features, such a
transition between a stationary, ‘‘liquid’’ phase, and an ag
‘‘glassy’’ phase, violation of the fluctuation dissipation rel
tion @16#, and dynamical ultrametricity@17,18#. In the glassy
phase, the dynamics is strongly intermittent, since mos
the time nothing happens, whereas the active periods ap
in bursts which become less and less frequent as t
elapses. Several recent experiments suggest that such a
termittency is indeed present in glassy systems@19–21#, or
in atomic physics@22–24#.

The finite-dimensional generalization of this model h
already been studied many years ago@25–28#, but only one-
time quantities~not well suited to study aging! were consid-
ered. These aging properties were addressed only recen
Refs. @14,29#, and, from a more rigorous point of view, i
Refs.@30,31#. One expects that in dimensionsd.2, the trap
model will have properties qualitatively similar to the ful
connected case, since each site is visited by the walk a fi
1063-651X/2003/67~2!/026128~20!/$20.00 67 0261
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number of times. In lower dimensionsd<2, the correlations
induced by the multiple visits of the walks to a given site
expected to lead to qualitative changes. It was for exam
shown in Ref.@29# that some quantities exhibitsubaging
properties, i.e., decay on a time scale that scale with
waiting time tw as tw

n with n,1. Because of the limited
number of accessible sites, one might also expect interes
properties such asdynamical localization, which means that
there is a finite probability thatk independent particles sit o
the very same site, even after a very long waiting timetw .
Such a dynamical localization was first established
Golosov in the context of the Sinai model@32# and extended
to the biased case in Ref.@33#, and more recently proven
rigorously for the one-dimensional trap model in Ref.@30#.

In this paper, we present a detailed study of the o
dimensional~nonbiased! trap model, using both numerica
simulations and analytical approximations. In the first s
tion, we focus on the scaling form of the average ‘‘diffusio
front’’ ^p(x,t)& in the subdiffusive, non-Gaussian phase,
which no analytical results are~to our knowledge! available.
We present some scaling arguments and approxima
schemes to account for our numerical data. We then disc
the idea of partial equilibrium in this model, which can b
explored in details through the distribution of dynamic
weights. The moments of this distribution are the usual ‘‘p
ticipation ratios’’ that characterize the localization propert
of the measure. Perhaps surprisingly, these localization i
cators are indeed finite~as first shown in Ref.@30#!, but
different from their static counterparts. We discuss in de
the origin of this difference, and try to characterize quanti
tively the distribution of dynamical weights. In the last se
tion, we study the aging behavior of two different correlati
functions, which exhibit different scaling properties, mea
ing that two different time scales,tw

n and tw , appear in this
model. We again develop intuitive arguments and sim
analytical approximations to understand these differenc
and obtain new predictions for the asymptotic behavior
the scaling functions, which are found to be in excelle
agreement with the numerics. Finally, we discuss the p
sible existence of multiple time scalings in this model~as can
©2003 The American Physical Society28-1
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happen in spin glasses@17# or in a generalization of the tra
model @29#!.

II. THE ONE-DIMENSIONAL TRAP MODEL:
ANOMALOUS DIFFUSION

A. Definition of the model

Consider a one-dimensional lattice, and define on e
site i a quenched random variableEi.0 chosen from a dis-
tribution r(E). Ei has to be interpreted as the energy barr
that the particle~the walker! has to overcome in order t
leave the site. The dynamics is chosen to be activated
temperatureT, which means that the escape ratewi of site i
is given bywi5G0e2Ei /T, whereG0 is a microscopic fre-
quency scale. Once that particle has escaped the tra
chooses one of the two neighboring sites, with probabi
q2 for the left one andq1512q2 for the right one. The
‘‘directed’’ case q151 is quite simple to analyze analyt
cally, since each is visited once—see Refs.@34,28,33#. The
caseq151/2 that we study in the following is much mor
subtle since each site is visited a large number of tim
inducing long range correlations in the hopping rates seen
the walker.~Note that as soon asq1Þ1/2, one expects the
large time properties of the walk to be the same as in
fully directed case@33#.!

An important remark has to be done at this point, while
numerical studies were done specifically with the model
scribed above, where hopping is constrained to nea
neighbor sites, both the analytical calculations and the s
plified arguments presented in this paper are expected to
ply to the more general case where hopping is only c
strained to have a finite range,hop .

For the purpose of heuristic arguments and Monte Ca
studies, it is interesting to study the trapping timet of the
particle on each site. Once the transition rateswi are given,t
is a random variable with a~site dependent! distribution
pi(t)5wi e2wit, of meant i5wi

21 . If we choose an expo
nential density of trap depths,r(E)5(1/Tg)e2E/Tg, then the
distribution oft i ’s over the different sites is a power law:

c~t!5
mt̂0

m

t11m
~t>t̂0!, ~1!

where m5T/Tg is the reduced temperature, andt̂0[G0
21.

For T.Tg , this distribution has a finite average value^t&
5 t̂0 /(m21). This corresponds to usual diffusion and s
tionary dynamics, with a diffusion constantD5a2/^t&,
wherea is the lattice spacing. On the contrary, forT<Tg ,
the first moment of the distribution diverges, diffusion b
comes anomalous and aging effects are expected. A dyn
cal phase transition takes place atTg , as in the fully con-
nected model. However, new properties emerging from
nontrivial spatial structure of the model are expected.

B. Disorder induced subdiffusion: A scaling argument

We first give a simple scaling argument~proposed in Refs.
@25,35,28#! that yields a subdiffusive behavior for the on
02612
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dimensional trap model introduced above. In the followin
we shall takea is the unit of length, as well asG0

21 as the
time unit. Roughly speaking, a typical random walk starti
from a given initial site has visited, afterN steps, of the order
of AN sites~which implies a typical displacementj;AN).
Each site is visited aroundAN times. So the timet elapsed
can be written as

t;AN (
i 52AN

AN

t i . ~2!

Since the sum ofM independent random variables distri
uted according to Eq.~1! grows asM1/m, we get

t;AN11(1/m);j11(1/m). ~3!

Inverting this relation leads to the following subdiffusive b
havior:

j~ t !;tm/(11m). ~4!

Note that the above argument holds only in the long-ti
limit, which is defined by the conditionj(t)@,hop . This
result was also obtained by Machta@27#, using real space
renormalization group arguments. The same behavior
holds for therandom barriermodel with a broad distribution
of barrier heights which, in one dimension, is expected to
equivalent to the trap model, as far as diffusion properties
concerned@28#. For this model, the average probability o
being on the initial site can be exactly computed, and dec
as 1/tm/(11m)51/j(t), in agreement with the above resu
The exponentm/(11m) is also in very good agreement wit
numerical results@29#.

The casem51 is special since logarithmic correction
come into play. Extending the above argument leads to

j~ t !;A t

ln t
~m51!, ~5!

whereas form.1 one recoversj(t);At.
Calling Pi(t) the probability to be on sitei after time t,

starting from sitei 50 at time t50, a spatial probability
densityp(x,t) can be introduced through the relationPi(t)
5a p( ia,t). One expects the disordered average diffus
front ^p(x,t)&t to take for large times the following scalin
form:

^p~x,t !&t5
1

j~ t !
f S x

j~ t ! D , ~6!

wherej(t) is given by Eq.~4!, f (•) is a continuous scaling
function and̂ •••&t stands for the average over the quench
trapping timest i . However, the full scaling functionf (•) is,
to our knowledge, not known. Only the value off (0) in the
dual ‘‘barrier’’ model was obtained in Ref.@26#. Before
studying more subtle issues, we have investigated this q
tion both analytically and numerically.
8-2
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C. The average diffusion front

For a system without disorder, or in the casem.1 where
the average trapping timêt& is finite, the central limit theo-
rem tells us immediately that the diffusion front becom
Gaussian at large times:

^p~x,t !&t5
1

A2pDt
expS 2

x2

2Dt D , ~7!

whereD5a2/^t& is the diffusion constant,a being the lattice
spacing, so thatD}(m21) when m→11. In the casem
<1, a modified space-time scaling is expected, as argue
the preceding section, as well as a non-Gaussian diffu
front.

We have developed simple approximation schemes~that
we expect to become exact in the limitsm→1 andt→`) to
computê p(x,t)&t analytically. The calculations are reporte
in Appendix A. We find that̂ p(x,t)&t can indeed be written
as Eq.~6! with j(t) given by Eq.~4!. The asymptotic shape
of f @z5x/j(t)# can furthermore be computed in the limi
z→0 andz→`. We find

f ~z!' f `uzuaexp~2buzub!, uzu→`, ~8!

f ~z!' f 02 f 1uzum2 f 2uzug, uzu→0, ~9!

wherea5(m21)/2, b511m and g5min(2,112m). The
constantsf 0 , f 1 , f 2 , f ` , andb arem dependent numbers tha
we can also compute in the Appendix@see Eqs.~A26! and
~A33!#.

In the casem51, we find, using the same approximatio
~which we now believe is exact!, that z is given by

xAln x/t'xA 1
2 ln t/t, and thatf (z) is exactly Gaussian, as fo

the normal casem.1. More precisely, one finds for the dif
fusion front, in the limitt→`:

^p~x,t !&t.A ln t

4pt
expS 2

x2

4t
ln t D . ~10!

We have tested numerically the validity of the scali
relation Eq. ~6!, for several values ofm. The plot of
j(t)^p(x,t)& as a function ofx/j(t), for different values oft
shows a rather good collapse~Fig. 1!. The curves collapse
well for m50.2 and 0.5, even if form50.2 data is more
noisy. However, finite-time corrections become stronger am
approaches 1. This is expected: subleading correction
scaling can be shown to become negligible only in the lim
where t (12m)/(11m)@1. For m50.9 and t5105, however,
this parameter is only'1.8. Therefore, we expect that th
m50.9 data will actually be strongly affected by the vicini
of m51, which plays the role of a critical point.

In Fig. 2 we show the scaling functions form50.5, 0.8,
and 0.9 obtained by extrapolating tot5` the scaling curves
obtained at finitet. We actually plotf (z)/za as a function of
zb in a semilog plot, in order to test directly the asympto
form given by Eq.~8!. Note that the approximation is sup
posed to be valid only form close to 1, but seems to wor
well even for rather small values ofm, like m50.5. Also
02612
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shown are the analytic predictions, with the computed
merical values of the constantsf ` and b. We see that the
agreement is quite reasonable, and actually suggests tha
value b511m is probably exact. Form50.9, critical cor-
rections become important and the predicted slope is no
good as form50.8, but the exponent 11m seems to be
correct.

Data corresponding tom51 are shown in Fig. 3. It is
actually necessary to take into account a finite-time corr
tion in this case, replacing lnt by ln(Gt), whereG is an un-
known constant that has to be fitted. This correction is na

FIG. 1. Plot ofj(t)^p(x,t)& versusx/j(t) for different tempera-
tures and different times. Data were obtained by Monte Carlo sim
lations on the model with fixed trapping times. Upper curves—m
50.2, andt5106(s), 108(n), 1010(1); middle curves—m50.5
and t5103(h), 104(v), 105(3); lower curves—m50.9 and t
5103(x), 104(L), 105(,).

FIG. 2. Plot of uzu(12m)/2f (z) versusuzu11m for m50.5(L),
0.8(s), and 0.9(n), obtained by an infinite-time extrapolation o
the Monte Carlo data. The analytical prediction, using the appro
mation valid form close to 1, is also shown for the same values
m ~lines!. The predicted exponentuzu11m is in good agreement with
the numerics, since data appear to be linear in this representa
The prediction forb—see Eq.~8!—is in best agreement with the
Monte Carlo data form50.8.
8-3
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ral, as can be shown by the structure of the subleading te
Fitting G on data corresponding tot5104 leads to G
.1.64. One sees that for largex, the slope is then found to
be the same for the three-times simulated.

We have also tested the smallz region. Form50.5, the
Auzu singularity predicted by our approximation—see E
~8!—is rather convincing. However, asm increases towards
1, the coefficientf 1 of uzum decreases towards zero. The ne
leading term becomes important and one indeed observe
effective singularity with an exponent intermediate betwe
m and 2: we find this exponent to be'1.6 for m50.8 and
'1.8 for m50.9.

III. PARTIAL EQUILIBRIUM AND LOCALIZATION

The one-dimensional diffusion problem is interesting b
cause, as mentioned above, each site is visited by the wa
large number of times. A natural idea is therefore that at ti
t, the probabilityPi(t) to find the particle at sitei should be
very similar to theequilibrium distribution restricted to an
interval of finite length}j(t). More precisely, we can expec
that Pi(t) can be written on the following ‘‘quasiequilibri
um’’ form Pi

qe(t):

Pi~ t !'Pi
qe~ t !5

gi~ t !

Z
eEi /T,

Z5 (
i 52`

`

gi~ t !eEi /T, ~11!

where the ‘‘form factors’’gi(t) are slowly varying and deca
on the scale ofj(t). ~Note that the energy barrierEi.0 is
the opposite of the energy of the site.! This idea of ‘‘partial
equilibrium’’ is actually quite general and is often advocat
in the context of glassy dynamics. Although the system is
of equilibrium, one may think of its state at timet as of a

FIG. 3. Plot ofjc(t)^p(x,t)&t versus@x/jc(t)#2 for m51 and
times t5103 (L), 104 (d), and 105 (n); jc(t) is the critical
coherence length, defined asjc(t)5@ t/ ln(Gt)#1/2, whereG is fitted
on the t5104 curve. The data points seem to converge at la
times towards the asymptotic Gaussian form predicted by Eq.~10!
~line!.
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partial equilibrium restricted to the region of phase space
it has explored up to timet, see, e.g., Refs.@36–38#. This
idea of partial equilibrium was introduced and used qua
tatively in the context of random walk models in Ref.@29#.

In this section, we want to discuss this issue in so
details. It turns out that the full statistics ofPi

qe can be
worked out in the limit, wherej(t)→`, and can be com-
pared to the corresponding statistics ofPi(t) that we deter-
mine numerically. Perhaps surprisingly, we find that the
statistics differ significantly even in the long-time limi
meaning that the out of equilibrium problem never a
proaches a quasiequilibrium regime.

A. Participation ratios and localization

In order to investigate the statistical property of a rand
probability measure@such asPi(t) or Pi

qe], one can intro-
duce the following distribution:

w~P!5K (
i

Pd~P2Pi !L
t

, 0,P,1, ~12!

which is defined in such a way as to give a small weight
the very large number of sites with small energies, in orde
evidence the statistics of the deeper traps present in the
tem. This distributionw(P) is normalized, since

E
0

1

w~P!dP5K (
i

Pi L
t

51. ~13!

The moments of this distribution are related to the so-ca
inverse participation ratiosYk :

E
0

1

Pk21w~P!dP5K (
i

Pi
kL

t

5Yk . ~14!

These participation ratios have an interesting interpretat
if Yk remains finite fork.1 as the number of terms in th
sum diverges, one speaks oflocalization, since a finite frac-
tion of the number of particles remain concentrated on
finite number of sites, even in the limit of an infinite numb
of available sites. TheYk were introduced in the context o
electronic localization@39# and in spin glass theory@40#, and
studied in several other problems@41,42#. Note that in the
limit k→1, (Yk21)/(12k) becomes the statistical entrop
of the measurePi .

In equilibrium, and for integer values ofk, Yk can be
interpreted as follows. Suppose one chooses at randok
particles with their corresponding equilibrium weight,Yk is
the probability to find them all at the same site. Correspo
ingly, for the out of equilibrium situation,Yk is the probabil-
ity to find k particles~that all started at the same site! clus-
tered together on the same site at timet. ObviouslyYk can
only be nonzero if some effective attraction exists betwe
the particles. In the case of disordered systems, this attrac
is induced by the disordered environment, where~noninter-
acting! particles condense into particularly favorable sites

For the problem at hand, the quasiequilibrium valueYk
qe

of the participation ratios can be computed, using for

e

8-4
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stance auxiliary integrals@41# ~see also Refs.@43,44#!. Inter-
estingly, the detailed shape of the ‘‘form factors’’gi in Eq.
~11! does not matter, and the quasiequilibrium resultsYk

qe

coincide with the equilibrium valuesYk
eq . For m>1, Yk

eq

tends to 0 whenj(t) goes to`, whereas form,1 it con-
verges for largej(t) to a finite value,

Yk
eq5

G~k2m!

G~k!G~12m!
, ~15!

identical to that found in the random energy model. Note t
Yk

eq→0 when m→12, so thatYk
eq(m) is continuous atm

51, and the participation ratios indeed converge to 0 in
critical case, although rather slowly. This means that in
low temperature phaseT,Tg , the equilibrium measure lo
calizes over a finite set of sites. The corresponding equ
rium distribution of weights is given by

weq~P!5
1

G~12m!G~m!
P2m~12P!m21. ~16!

In order to test the partial equilibrium idea, a relevant qu
tion is whether or not the dynamicalYk(t) approach, in the
long-time limit, the equilibrium~infinite size! Yk

eq . This can
be also seen as a question about the commutation of the
limits t→` andL→` ~see, e.g., Ref.@3#!. The equilibrium
case corresponds to takingt→` first, at fixedL, and then
takingL to infinity. The out of equilibrium case, on the oth
hand, corresponds to takingL5` from the outset and le
t→`.

B. Dynamical localization and weak ergodicity breaking

Let us now turn to the dynamical localization propertie
starting from a localized initial condition,Pi(t50)5d i ,0 . It
has been shown by Fontes, Isopi, and Newman@30# that the
random walk process with a diverging local mean trapp
time converges, up to a space-time rescaling, to a statio
process. Consequently, all spatially integrated~one-time!
quantities like participation ratios converge to asympto
values at large time, which area priori different from the
equilibrium ones. Unfortunately, this mathematical approa
has not been yet able to predict the corresponding nume
values. We have computed numerically, using a sim
Monte Carlo method, the time dependence ofYk(t) for sev-

eral values ofk (k52,5
2 ,3,72 ,4); seeAppendix B for techni-

cal details. Our simulations confirm the convergence
Yk(t) towards a limiting value for larget, and show that
these asymptotic values are indeed different from the e
librium ones.

In order to evidence the convergence ofYk(t) towards
different asymptotic values depending on the order of lim
t→` and L→`, we have first studied small systems f
different sizesL52N11, in the casem50.5. Figure 4
shows the onset of a clear plateau at a valueY2

dyn(L) smaller
than the value predicted by Eq.~15!, Y2

eq50.5 ~for L→`),
before a crossover towards the equilibrium regime. Res
ing the time coordinate by a factorN(11m)/m ~corresponding
to the equilibration timeterg of the system!, the data collapse
02612
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rather well, at least in the crossover region. This shows
the plateau indeed corresponds to the onset of an out of e
librium steady state regime, when the diffusion length
much smaller than the size of the system. The crosso
appears when the two lengths become comparable.

In order to study the asymptotic valueY2
dyn[Y2

dyn(L
→`), we have simulated systems of very large sizesL.
However, the temporal convergence ofY2(t) is very slow
and some infinite-time extrapolation procedure is needed
illustrated in the inset of Fig. 5 fork52 and m50.5, we
have assumed a power-law convergence ofYk , of the form
Yk(t)5Yk

dyn1At2a with 3 fitting parametersYk
dyn , A anda,

which was found to work rather well. However, form close
to 1, the fitting parameterYk

dyn becomes very sensitive to th
choice of the time interval used to fit the data, and as a res
error bars become larger.

Figure 5 shows the extrapolatedY2
dyn andY3

dyn as a func-
tion of m, and compares it to the equilibrium relatio
Y2

eq(m)512m, and Y3
eq(m)5(12m)(12m/2). It appears

that the dynamical localization is weaker than in equilibriu
In particular,Y2

dyn andY3
dyn converge to a value smaller tha

1 when m goes to 0. We shall argue below thatYk
dyn(m

50)52/(k11), whereasYk
eq(m50)51. In the other limit,

m→1, it will also be argued in the following section tha
Yk

dyn vanishes linearly withm. This is indeed compatible
with the numerical data, although other functional depe
dence might also be compatible, since the error bars are l
in this range ofm. We have also shown in Fig. 5 the predi
tion of a simple argument given in Sec. IV D below, whic
suggestsYk

dyn(m)52Yk
eq(m)/(k11), which is in rather

good agreement with the numerical results.
Therefore, all the dynamical participation ratiosYk

dyn are
different from their static counterpart. The relative weights
the different visited sites are not given by the ratio of th

FIG. 4. Test of the convergence ofY2(t) towards an out of
equilibrium value, form50.5: Y2(t) is plotted for different small
sizesL52N11 of the system, so that equilibration can be reach
within simulation time. One can see the onset of a plateau at a v
lower thatYk

eq50.5 ~the equilibrium value forL→`). The inset
shows that the curves collapse if time is rescaled by the equili
tion time terg}N(11m)/m, so that the plateau corresponds to a tr
out of equilibrium effect, and not to an initial transient.
8-5
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Boltzmann weights. This result is important, since it w
shown that, in the Sinai model, equilibrium and dynami
participation ratios indeed coincide@45#. An interesting pos-
sibility, discussed in the context of glassy systems, would
that theYk

dyn correspond to an equilibrium measure but a
different effective temperature. We will show below, that th
is not the case.

Note that for walks in higher dimensions,d.2, one can
show rigorously thatYk

dyn50 @31#, whereasYk
eq are still

given by Eq.~15!.1 However, in this case, each site is visite
a finite number of times, and therefore it could have be
expected that the idea of partial equilibrium over the set
visited sites would be quantitatively incorrect~although it is
able to reproduce, at least qualitatively, some nontrivial
namical correlation functions—@29# and see below!. An-
other solvable case is the one-dimensional directed w
where each site is visited once. In this case,Y2

dyn can be
computed exactly@33# and is found to be close to, but dif
ferent from, the equilibrium value 12m.

The surprising aspect of our result in one dimension
that each site is visited, asymptotically, an infinite number
times—a feature that, at least naively, should lead to pa
equilibration.

A different, but related, issue concerns the fractionf i(t)
of the total timet a givenparticle has spent in thei th trap,
and study the participation ratios of this quantity. In this ca
we have found numerically that the differentYk are given by
the equilibrium formula, Eq.~15!. Therefore, we are in a
situation where ergodicity is~weakly! broken: the relative

1The cased52 is marginal, but one still finds thatYk
dyn50 in that

case@31#.

FIG. 5. Plot of Y2
dyn ~filled circles! and Y3

dyn ~empty circles!
versusm. The equilibrium functionsY2

eq(m) ~full line! andY3
eq(m)

~dashed line! are shown for comparison. One clearly sees that
calization is weaker than in the equilibrium situation. In particul
the participation ratios seem to converge to a zero temperature
which is less than 1. The stars and the dotted lines correspon
the prediction of a simple model given below, Eq.~39!. Inset: fit of
Y2(t) using the functional formY2(t)5Y2

dyn1At2a, for m50.5.
Only 1 Monte Carlo point out of 12 is shown, for clarity.
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time a given particle spends on different sites has not
same statistics as the relative fraction of particles that
found on the different sites at a given instant of time. Suc
difference between individual and ensemble measurem
have been emphasized in a different context in Ref.@22#, and
recently observed experimentally@24#.

C. Analytical calculation of the participation ratio

Using the same procedure as for^p(x,t)&t , one could try
to computeYk(t) that is given by

Yk~ t !5E
2`

`

dx^p~x,t !k&t . ~17!

However, this calculation reveals to be much harder than
the case of̂ p(x,t)&t . In Appendix C, we report a simplified
calculation in the casek52, which aim is to argue thatY2

dyn

is different from 0 in the low temperature phasem,1,
whereas it vanishes form.1. Although this last result has
been rigorously proven in Ref.@30#, we want to introduce
here a general method that could, in principle, yield boun
and approximations forYk for any m, and not only form
,1. We obtain the behavior ofY2

dyn for m→12 and find
how Y2(t) vanishes as a function oft for m.1. To do this,
we introduce a functionR(t,t8) through

R~ t,t8!5E
2`

`

dx^p~x,t !p~x,t8!&t ~18!

@so that Y2(t)5R(t,t)], as well as its Laplace transform
R̂(s,s8),

R̂~s,s8!5E
0

`

dtE
0

`

dt9e2st2s8t8R~ t,t8!. ~19!

Using rather crude approximations, we obtain that, in
particular case wheres5s8 andm,1:

R̂~s,s!.
R0

s2
, s→0, ~20!

with a finite coefficientR0. In order to interpret this result
we assume thatR(t,t8) obeys, for larget,t8, a scaling rela-
tion of the form

R~ t,t8!5Y2
dynRS t

t8
D , ~21!

which we have confirmed using numerical simulations. Th
one gets

R̂~s,s!;
2Y2

dyn

s2 E
1

`

du
R~u!

~11u!2
, ~22!

or, using Eq.~20!,

-
,
it
to
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Y2
dyn5

R0

2E
1

`

du
R~u!

~11u!2

. ~23!

Since the integral appearing in the above equation is con
gent @becauseR(u)<1], this result suggests thatY2

dyn is
finite whenm,1. Since we find thatR0 vanishes linearly
whenm→12, we conjecture that

Y2
dyn}12m ~m→1!, ~24!

which is compatible with the numerics and also compara
with the equilibrium behavior. The same level of approxim
tion on Y3 also leads to a finite limitY3

dyn , and to a linear
temperature behaviorY3

dyn}12m (m→1), so that one can
reasonably guess that this linear dependence is valid fo
k.1.

The casem.1 has also been studied; we find for 1,m
,2 the new predictions,

R̂~s,s!;
1

~s52m/2!
~1,m,2!

R̂~s,s!;
1

s3/2
~m.2!, ~25!

which predicts thatY2(t) tends to zero ast (12m)/2 when 1
,m,2, and ast21/2 wheneverm.2. The last result is in-
deed expected: when the second moment ofc(t) exists, dif-
fusion is normal with no anomalous corrections. The pro
ability that two particles starting at time 0 at the same s
happen to be again on the same site at timet decays as
j(t)31/j(t)2}1/At. The result for 1,m,2 has been
checked numerically form51.3, 1.5, and 1.7~see Fig. 6!.

FIG. 6. Plot ofY2(t) for m51.3, 1.5, and 1.7~full lines, from
top to bottom!, showing a power-law decay compatible with th
predicted behaviort (12m)/2 ~dashed lines!. Note that the subleading
corrections become stronger whenm is close either tom51 or to
m52.
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D. Partial equilibrium in a finite region

We have seen that the dynamical participation ratio ne
reaches the static equilibrium value. Can one, however,
late a region of space, of size,(t) possibly much smaller
thanj(t), such that inside that region equilibrium is reach
? In order to test this idea, one can define a spatially
stricted participation ratioYk(,,t) in the following way as

Yk~,,t !5 (
u i u<,

P̃i~ t !k, ~26!

whereP̃i(t) is the probability that the walk is on sitei con-
ditioned to the fact that it is within the interval@2,,,#

P̃i~ t !5
Pi~ t !

(
u j u<,

Pj~ t !

. ~27!

Figure 7 shows the numerical results for the following re
caled quantity:

DY2~,,t !5
Y2~,,t !2Y2

dyn

Y2
eq2Y2

dyn
, ~28!

such thatDY251 for an equilibrated region, and 0 by con
struction for,@j(t).

The results are obtained witht ranging from 103 to 107,
andm50.5. Whent goes tò at fixed,, Y2(,,t) is seen to
converge to the corresponding equilibrium value@which de-
pends slightly on,: Eq. ~15! is only valid in the limit of
large sizes#. In the inset we showDY2(,,t) as a function of
,/j(t). The collapse is rather good, showing that the size
to which the system is equilibrated grows asj(t), which is
thus the only dynamical length scale of this model. Th
Y2(,,t) is equal to the equilibrium value for,,fj(t),

FIG. 7. Plot ofDY2(,,t) versus, for m50.5 andt5103, 104,
105, 106, and 107, so thatj(t) ranges from 10 to 215. Inset: th
size, of the window is rescaled byj(t), and the resulting collapse
of the curves shows that the equilibration length scale is of the o
of a fraction ofj(t). The strong increase ofDY2(,,t) for small, is
due to small size effects.
8-7
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wheref is a small number, means that only the ‘‘contemp
rary’’ processes concerning the largest scalej(t) are out of
equilibrium. In the sense, this could have been expec
However, let us emphasize again that a simple descrip
such as Eq.~11!, which describes the lack of equilibrium o
the scale ofj through the form factorsgi(t), cannot explain
the observed difference betweenY2

eq andY2
dyn .

IV. GENERALIZED EQUILIBRIUM AND HALF SPACE
EXCURSIONS

A. A functional relation between the Yk’s

We have seen that the dynamical participation ratios
not take their equilibrium value. Would it be possible to r
define an effective temperaturem̃ such that allYk can be
expressed as equilibrium values with this effective tempe
ture? In order to test this idea, one can eliminatem from the
relation Eq.~15!, and reexpress allYk as a function ofY2,
which yields the following relation:

Yk5 f k~Y2!5
G~k211Y2!

G~k!G~Y2!
. ~29!

In Fig. 8, we have plottedY3
dyn versusY2

dyn for several val-
ues ofm. It appears clearly that this relation is different fro
the equilibrium one, shown for comparison. This rules o
the possibility of defining a meaningful temperature fro
Y2

dyn .
The above relation between theYk is known to be incor-

rect in other models, such as in the random map, for exam
~see Ref.@41#!. Inspired from the replica method, one ca
formally generalize Eq.~15! to

Yk,n5
G~12n!G~k2m!

G~k2n!G~12m!
, ~30!

FIG. 8. Plot of Y3
dyn(m) versusY2

dyn(m), parametrized bym.
The equilibrium relation, corresponding ton50 in the replica lan-
guage, is shown for comparison~dotted line!. A rather good accoun
of the data is obtained usingn521 ~dashed line!. However, as we
show below, a better description is obtained using a mixture on
522 cases, see Eq.~39! ~full line!.
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wheren is the number of replicas~that must be set ton50 to
recover Eq.~15!, see Refs.@41,44#!. We can then expres
Yk,n as a function ofY2,n for arbitraryn. We found that the
valuen521 gives a reasonable account of the data for alm
values. Interestingly, this valuen521 was found to de-
scribe exactly the ‘‘area preserving random map model’’ co
sidered in Ref.@41# ~where other models, corresponding
different negative values ofn, where also studied!. However,
as we discuss now, a more precise investigation of the p
lem shows thatn521 does not fully describe our results.

B. The dynamical distribution of weights

Instead of studying all the differentYk’s, one can analyze
directly the time evolution of the distribution of weights
w(P,t), defined as@see also Eq.~12!#:

w~P,t !5K (
i

Pd~P2Pi~ t !!L
t

, 0,P,1. ~31!

For long times in an infinite system, this distribution is e
pected to reach a stationary distributionwdyn(P). The inset
of Fig. 9 showsw(P,t) for three successive~large! times: t
5103, 104, and 105. All three curves collapse rather well, a
least not close to the ‘‘edges’’P50 andP51, showing that
we are close to the asymptotic distribution.~However, since
theYk’s are sensitive to the region aroundP51, the discrep-
ancies at the edges explain why these moments conv
more slowly.!

One can define a generalized distributionwn,m̃(P) as the
one generating theYk,n(m̃), which leads to the following
beta distribution:

wn,m̃~P!5
G~12n!

G~12m̃ !G~m̃2n!
P2m̃~12P!m̃2n21. ~32!

FIG. 9. Fit of w(P) with the n521 ansatz@Eq. ~32!# using m̃
as a free parameter, form50.3 andm50.1. The fit is worse and
worse asm is decreased. Note that for higher values ofm, the fits
are better. Inset,w(P,t) is plotted for different timest5103 ~full
line!, 104 ~dashed line! and 105 ~dotted line! in order to evidence
the convergence towards an out of equilibrium distributionwdyn(P)
(m50.5).
8-8
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Following the same line of thought as in the preceding s
tion, we want to check more precisely if the data are co
patible withn521.

The parametric plotY3
dyn(Y2

dyn) was just a convenien
way to test whetherY3

dyn andY2
dyn obey a relation of the type

Eq. ~30!, with m replaced by an unknown parameterm̃.

Turning to wdyn(P), one can then considerm̃ as a free pa-
rameter, and try to fit the numerical data, fixingn to the value
n521 found in the preceding section. Form>0.5 the fits
obtained are correct~data not shown!. On the contrary, for
m,0.5 the best fits appear to be quite unsatisfactory, in p
ticular, for m50.1 ~see Fig. 9!, showing that then521
ansatz does not fully account for the numerical data. Thi
due to the fact thatwn,m̃(P) is a monotonous function what

ever the value ofm̃, whereaswdyn(P) becomes nonmono
tonic for low values ofm, so that the former cannot fit cor
rectly the latter. As a result, the numerical data cannot
described by a formula of the type of Eq.~32!, in particular,
in the very low temperature case, although this ansatz
rather correctly accounting for the parametric p
Y3

dyn(Y2
dyn). In order to get a better understanding of th

dynamical localization phenomena, we shall now focus
the casem→0, where simple arguments can be proposed

C. A simple analytical argument in the limit µ\0

Although the out of equilibrium localization problem
seems to be hard to tackle at finite temperature, a sim
argument can be given in the limitm→0. This argument
accounts for the nontrivial limitsY2

dyn andY3
dyn , which were

found to be less than 1 form→0 ~see Fig. 5!. If m is very
small, then the largest trapping times accessible after a g
time t are strongly separated from each other. One can,
example, show that the distribution of the ratioR of the
second largest time over the largest isp(R)5mRm21, which
tends tod(R) whenm→0. Therefore, in this limit, one can
assume that the time elapsed before finding the deepest
i 0 occupied at timet is negligible compared to the time spe
in i 0.2

So the problem becomes equivalent to that of a rand
walk with no random potential, but with two absorbin
boundaries~i.e., the traps with trapping time.t to the right
and to the left of the initial site! at random positions. If thes
absorbing sites are at distances, respectively,xr andxl from
the initial position of the walk, then the probability to b
absorbed by~say! the left boundary ispl5xr /(xl1xr).
Since the initial site can be anywhere between these two
with equal probability, one finds thatpl is a random variable
uniformly distributed over@0,1#. Coming back to the trap
model, it means that only two sites can be occupied, and
corresponding occupation rates are uniform random v
ables. More preciselyw(P) can be written as

2The time spent on sitei 0 is actually much greater than the tra
ping timet i 0

, since the particle comes back to it a large number
times before finding a deeper trap~see Sec. V!.
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w0~P!5PE
0

1

dpl@d~pl2P!1d~12pl2P!#52P,

~33!

which leads forYk to

Yk
05E

0

1

Pk21w0~P!dP5
2

k11
. ~34!

For the particular casesk52 andk53 presented above, thi
givesY2

05 2
3 andY3

05 1
2 , which agrees rather well with wha

can be extrapolated from the numerical data on Fig. 5. Mo
over, Fig. 10 confirms thatw(P) converges towardsw0(P)
when m→0, although rather slowly. Note also thatw0(P)
can be written in the general form Eq.~32! given in
the preceding section, for the special choicen522 and
m̃521.

D. Generalization of the argument to finite temperature

The above argument can be reinterpreted in the follow
way. In equilibrium, the zero temperature limit means tha
single site dominates and contains all the probability weig
This is whyYk

eq→1 whenm→0. On the other hand, in on
dimension, the time needed to explore an interval of sizeL is
L (11m)/m, which grows much faster than the time to exit th
deepest traps (;L1/m) found in the interval. Therefore, if a
deep trap is encountered in say the left region of the li
there is a substantial probability that the particle will n
have time to explore the right region and equilibrate with
trap of comparable depth. This is the essence of the ab
argument: at zero temperature, the fractionpl of the weight
captured by the left trap is uniform between zero and o
independently of the relative depth of the two traps. A sim
way to generalize this argument for finite temperature is
assume that each half space is independently equilibra

f

FIG. 10. w(P) for several small values ofm: m50.2 ~full line!,
0.1 ~dot-dashed line! and 0.05~dashed line!. The curves seem to
converge towards the asymptotic distributionw0(P) ~dotted line!
for m→0, but the convergence looks quite slow. Note thatP50
and P51 are presumably singular points in this convergence p
cess.
8-9
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E. M. BERTIN AND J.-P. BOUCHAUD PHYSICAL REVIEW E67, 026128 ~2003!
and carries a total weight uniformly distributed between z
and one, as in the zero temperature limit.@Actually, as no-
ticed above, we only need to assume that in each half sp
the probability distribution has the form given by Eq.~11!
with arbitrary factorsgi : this does not affect the asymptot
shape ofw(P)5weq(P).# Denoting byw(P,pl) the distribu-
tion restricted to the left half space, normalized topl , one
has for 0,P,pl ,

w~P,pl !5
pl

G~12m!G~m!
P2m~pl2P!m21. ~35!

Averaging overpl with a uniform weight, and taking into
account the right half space, leads to the following predict
for w(P),

w~P!.w* ~P!52E
0

1

dplw~P,pl !u~pl2P!, ~36!

w* ~P!5
2

G~12m!G~11m!
P12m~12P!m

1
2m

G~12m!G~21m!
P2m~12P!11m. ~37!

Although we do not have any interpretation for this, one c
notice thatw* can be written as a superposition of distrib
tions w22,m̃ , with two different values ofm̃,

w* ~P!5~12m!w22,m21~P!1mw22,m~P!, ~38!

with wn,m̃ defined in Eq.~32!, and in agreement with wha
was found form→0. This prediction is compared with th
numerics in Fig. 11, for several values ofm (m50.1, 0.3,
0.5). The agreement is rather good; note that no fitting

FIG. 11. Comparison betweenw(P) obtained by numerica
simulations~symbols! andw* (P) given by the argument develope
in the text~lines!. The agreement appears to be quite good, bea
in mind that no free parameter is used. Inset: distributionW(pl) of
the probability weightpl carried by one half space, for differentm.
This distribution appears to be nonuniform~except form→0), at
variance with the hypothesis underlying Eq.~36!.
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rameter is used here. We note that the participation ratiosYk
obtained usingw* (P) are simply proportional to the equilib
rium values

Yk* 5
2

k11
Yk

eq . ~39!

As shown in Fig. 5, this relation accounts quite well~but not
exactly! for the data. However, the distributionW(pl) of the
weight pl512pr carried by one half space is not found
be uniform as we assumed, except form→0—see the inset
of Fig. 11. Surprisingly, if one redo the above computati
with a humped shaped distributionW(pl)5A@pl(12pl)#s,
the resultingw* (P) does not fit the data as well as the abo
form, which corresponds tos50.

E. Discussion

The physical picture emerging from the last sections is
following. For the purpose of understanding global localiz
tion quantities, one can reasonably consider that spac
split into two half lines, and that each one behaves as
was independently equilibrated, but out of equilibrium wi
respect to the other. On the other hand, we have seen in
III D that length scales much smaller thanj could be con-
sidered as equilibrated, and that departure from equilibri
comes from the largest length scaleuxu*j. The equilibration
of the small scales cannot be accounted for by the prev
argument. All these observations suggest, in order to g
consistent picture, that space may be actually divided i
three regions, an equilibrated domain centered on the or
and two quasiequilibrated regions on each side, and that e
part of space is not equilibrated with the others.

An artificial remedy to this lack of equilibration betwee
the different regions is to allow the particle to make lo
jumps. We have therefore added links between the sitesx and
2x, such that the probability to hop directly fromx and
2x decays asx2r. Whenr is large enough, the dynamica
participation ratioY2(t) is a decreasing function of time, an
seems to converge toY2

dyn . Whenr,rc on the other hand,
Y2(t) is seen to reach a minimum and to increase back
wards the equilibrium valueY2

eq . We have, however, no
checked in details whetherY2(t) indeed converges toward
Y2

eq for all r,rc , but only wanted to illustrate that th
difference betweenY2

dyn and Y2
eq is due to the scarcity of

the links between the different sites for the one-dimensio
lattice.

V. CORRELATION FUNCTIONS, AGING AND SUBAGING

A. Motivation

Let us now turn to different correlation functions that o
can define in order to probe the peculiaraging properties of
this model. Since the largest encountered trapping time
ing tw scales astw

n with n51/11m,1, one would naively
expect that two-time correlation functions vary on a tim
scale;tw

n . This would correspond to ‘‘subaging’’ behavio
where the effective relaxation time grows less rapidly thantw
itself.

g
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This is indeed the case for the probabilityP(tw1t,tw) of
not having jumped at all between timestw and tw1t. This
correlation function was computed numerically in Ref.@29#,
and was found to scale very accurately asP(tw1t,tw)
5p(t/tw

n ). The shape of the scaling function was compa
to the prediction of an approximate calculation where o
assumes ‘‘partial equilibrium,’’ i.e., that the probability t
find the particle in a trap of deptht after timetw is equal to
the equilibrium probability within a region of sizej(tw).
This approximation predicts a power-law behavior forp(s)
both for small and larges, with exponents that agree wit
their numerical determination. The detailed shape ofp(s),
however, departs from the numerical results, which is
pected. The success of the partial equilibrium assump
here is due to the fact thatP(tw1t,tw) only depends on the
average probability to occupy a site, and not on higher or
correlations such as needed to compute the participation
tios Yk .

Perhaps surprisingly, different correlation functions m
exhibit a completely different aging behavior. Consider t
probability C(tw1t,tw) that the particle occupies the sam
site at time tw1t and at time t. Obviously, C(tw1t,tw)
>P(tw1t,tw). But in this case, it was shown rigorously
Refs. @30,31# that C(tw1t,tw) scales as a function oft/tw ,
and not as t/tw

n . This means that even if the particle h
almost certainly jumped away from its starting point afte
time tw

n !tw , it has returned there even after a time of ord
tw so as to makeC(2tw ,tw)5O(1), whereasP(2tw ,tw)
→0. This difference is not intuitivea priori, in particular
because one knows that once the particle has left its in
trap after a time;tw

n , it takes on average an infinite time t
get back there, since the walk is one dimensional. Bu
C(tw1t,tw) is to decay on the scaletw , it means that the
probability not to find the particle on its starting point after
time t much greater thantw

n , but much less thantw must tend
to zero whentw→`. The fact that the particle jumps bac
and forth a large number of times betweentw

n and tw could
thusa priori lead to an interesting behavior ofC(tw1t,tw)
in the short-time regimet/tw!1 ~which was not investigated
in @30#!. For example, one could find, as in Ref.@29#, differ-
ent ‘‘time domains’’t;tw

n1 , t;tw
n2 , etc., where the correla

tion function has a different analytic behavior. This is t
issue that we discuss below.

B. Analytical arguments

The difference of scaling betweenP andC can be quali-
tatively understood as follows. ForC(tw1t,tw) to decay to
zero, one has to wait until the region probed by the particl
time tw1t is much larger than the initial region where it wa
located, i.e., a timet such thatj(tw1t)@j(tw). But since
j(tw);tw

m/(11m) , the time needed forC to decay to zero is
necessarily of ordertw . @Note that this argument does n
hold for P(tw1t,tw), which only requires the particle to ho
once out of its initial trap.#

In the same spirit as Ref.@29# for P(tw1t,tw), but using
a slightly different method, one can try to give an appro
mate calculation ofC(tw1t,tw). The first step is to intro-
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duce the dynamical distribution of trapping timesp(t,tw),
assumed to behave as

p~t,tw!.
1

tw
n

fS t

tw
n D . ~40!

This encodes the fact that typical trapping times are of or
tw
n . If one assumes that short-time scales (t!tw

n ) are equili-
brated, whereas large ones (t@tw

n ) are still distributed ac-
cording to thea priori distribution ~this can be rigorously
proved in the fully connected trap model!, one obtains the
following asymptotic behavior forf(z):

f~z!.
g0

zm
, z→0, ~41!

f~z!.
g`

z11m
, z→1`. ~42!

Using the relation

P~ tw1t,tw!5E
1

`

dtp~t,tw!e2t/t, ~43!

one can easily deduce from Eq.~41! the short-and late-time
behavior ofP(tw1t,tw),

P~ tw1t,tw!.12
g0

12m
G~m!S t

tw
n D 12m

, t!tw
n , ~44!

P~ tw1t,tw!.g`G~m!S t

tw
n D 2m

, t@tw
n , ~45!

in agreement with the results of Ref.@29#, and with the nu-
merics~see below!.

Turning now toC(tw1t,tw), one has to take into accoun
the fact that when a particle leaves its trap, it will come ba
a large number of times before really escaping. We thus p
pose the following approximation. A particle will be consid
ered to have truly left its initial trap if it has encountered
deeper trap during its excursion out of the original tra
Given a trapping timet, the probability thatt8.t is given
by

P~t8.t!5E
t

` mdt8

t811m
5

1

tm
. ~46!

So the probabilityp̃(,,t) that the first trap encountered wit
a trapping time larger thant is found at a distance, is

p̃~,,t!5P~t8.t!@P~t8,t!#,215
1

tm S 12
1

tmD ,21

.

~47!

For larget ’s, one has
8-11
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p̃~,,t!'
1

tm
e2,/tm

. ~48!

Note that we only give here a scaling argument, and t
corrections coming from the fact that there is a deeper
on both sides are neglected. Conditioned to the fact that
deeper trap is situated at a distance,, the particle has a
probability 1/, to reach it, once it has jumped out of i
initial trap. Therefore, the escape rate can be written as

w~t,, !5
1

t,
. ~49!

The correlation functionC(tw1t,tw) is then given by

C~ tw1t,tw!'E
1

`

dtp~t,tw!E
1

`

d, p̃~,,t!e2w(t,,)t.

~50!

After a few changes of variables, and using the scaling r
tions of Eq. ~41!, one finds the following short-time an
late-time behavior forC(tw1t,tw),

C~ tw1t,tw!.12csS t

tw
D (12m)/(11m)

, t!tw , ~51!

C~ tw1t,tw!.cl S t

tw
D 2m/(11m)

, t@tw , ~52!

where the constantscs andcl are given by

cs5
g0

12m
GS 2m

11m D 2

, ~53!

cl5
mg`

~11m!2
GS m

11m D 2

. ~54!

These values for the short-time and late-time singularity
ponents, have, to our knowledge, not been reported be
although they should, in principle, be contained in the ana
sis of Ref.@30#. We now turn to a numerical investigation o
these asymptotic predictions.

C. Numerical results and multiple time scales

Figure 12 displays 12P(tw1t,tw) as a function of
t/tw

1/(11m) , andC(tw1t,tw) as a function oft/tw , for differ-
ent waiting times (tw5103, 104, 105, and 106) and at tem-
peraturem5 1

2 . The collapse is very satisfactory, confirmin
the validity of the predicted scaling relations.

Let us analyze in more details the short-time behavior
these correlation functions. When plotting ln(12P) as a
function of ln(t/tw

n ), the scaling is still quite well obeyed an
in good agreement with the theoretical prediction 12P
;(t/tw

n )12m, obtained in Ref.@29#, up to small-time correc-
tions that vanish only whenG0t@1.

On the other hand, a similar plot of ln(12C) as a function
of ln(t/tw) is less convincing, which could be the sign
02612
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p

he

a-

-
re,
-

f

multiple time regimes~as was the case in Ref.@29#, where
similar ‘‘nonscaling’’ features actually suggested such
gimes!. A way to investigate this issue is to study the fun
tion g(a,tw) defined as

g~a,tw!52
ln@12C~ tw1tw

a ,tw!#

ln tw
. ~55!

If this function has a limitg`(a) whentw→`, it means that
in the time domain, wheret;tw

a , the probability 12C that
the particle has escaped from its starting site decays
tw

2g`(a) for large tw . From thet/tw regime established by
Ref. @30#, we already know thatg`(1)50. If 12C(tw

1t,tw) behaves as (t/tw)l even for t;tw
a with a,1, then

one should observeg`(a)5l(12a). Any departure from a
linear functiong`(a) would signal multiple time regimes; in
particular, for the model considered in Ref.@29# in d51
where two subaging exponentsn2,n1,1 appear, one finds
that the functiong`(a) is piecewise linear in the interval
@0,n2# and@n2 ,n1#, with different slopes. One also finds th
g`(n2

2)5g`(n2
1), and g`(a.n1)50. In this case, the

change of slope indicates the presence of a character
time scale. One could imagine more complicated ‘‘multisc
ing’’ situations, whereg`(a) is a nontrivial curve.

We have first tested this procedure onP(tw1t,tw), de-
fining in the same way a functiong* (a,tw) associated with
P. In this case, a single subaging scaling is expected, w
n51/(11m), and l512m, which leads tog`(a)5(1
2m)(n2a). The functiong* (a,tw) is plotted for different
values oftw ~namely,tw5104, 105, 106, and 107) in Fig. 13,
for m5 1

2 . On general grounds, one expects finite-time c
rections tog*̀ (a) that decays as 1/lntw and 1/tw

g . Using
these corrections, one can very satisfactorily extrapo
g*̀ (a,tw) to a function which is very close to the expecte

FIG. 12. Plot of 12P(tw1t,tw) ~increasing curve! versust/tw
n

(r5n) andC(tw1t,tw) ~decreasing curve! versust/tw (r51), for
m5

1
2 , and n51/(11m)5

2
3 . The scaling relations are very we

satisfied, at least in this time window. Symbols refer to the sa
waiting times for the two curves:tw5103 (1), 104 (L), 105 (s),
and 106 (x).
8-12
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result g*̀ (a)5 1
2 ( 2

3 2a) ~see Fig. 13!. To be more specific
we used the following functional form for the extrapolatio

g* ~a,tw!5g*̀ ~a!1
b

ln tw
1c~a!t2g(a), ~56!

whereg*̀ (a), c(a), andg(a) are fitted for each value ofa,
and b is a fitting coefficient independent ofa, since the
1/ln tw correction is expected to come from the prefactor
(t/tw

n )12m in the short-time expansion of the correlatio
function. Therefore, the value ofb was fixed from the direct
power-law fit of the short-time regime of 12P.

FIG. 13. Functiong* (a,tw), associated toP(tw1t,tw), with
m5

1
2 and tw5104, 105, 106, and 107. The functiong*̀ (a) ~full

line! is expected to beg*̀ (a)5
1
2 ( 2

3 2a) ~see text!. The infinite-
time extrapolationg* (a,tw) (L) agrees very well with the predic
tion, with small discrepancies neara50 anda5

2
3 , where finite-

time effects are stronger.

FIG. 14. Functiong(a,tw), associated withC(tw1t,tw), for
m5

1
2 and with the same waiting times as forg* (a,tw). The argu-

ment developed in the text@Eq. ~51!# predictsg`(a)5
1
3 (12a)

~full line!. Although finite-time corrections are stronger than in t
previous case, the infinite-time extrapolationgex(a) (L) agrees
well with the prediction, at least for 0.2,a,0.8.
02612
f

One can now apply the same procedure toC(tw1t,tw).
The results are shown in Fig. 14, using the same conven
as for Fig. 13;g(a,tw) is represented for the same waitin
times asg* (a,tw). Interestingly, although finite-time correc
tions are strong, the extrapolated results are in good ag
ment with our analytical predictiong`(a)5l(12a), with
l5(12m)/(11m)51/3, at least whenaP@0.2,0.8#. This
suggests that a unique time regimet;tw is relevant for
C(tw1t,tw), although we know that the time scaletw

n !tw

governs the evolution ofP. Note that the 1/lntw corrections
are weaker than in the previous case, and one is almost d
nated by power-law corrections. This is due to the fact t
the prefactor of (t/tw)l in the short-time regime happens
be close to 1 here~and hence the parameterb is small!,
whereas the prefactor of (t/tw

n )l was about 0.57 forP.
So, what happens to the particles that have left the ini

trap after a short-timetw
n and took a very long time to com

back? The probability that a particle leaves the trap exactl
t8 is ]@12P(tw ,tw1t8)#/]t8;t82m/tw

n(12m) . If the sample
was not disordered, the probability that it has not returned
the origin after timet2t8 decays as (t2t8)21/2. Because of
the long trapping times, this probability actually deca
slower, as (t2t8)2m/(11m). These particles contribute to
2C, as

12C~ tw1t,tw!;E
0

t

dt8
t82m

tw
n(12m) ~ t2t8!2m/(11m). ~57!

Choosingt5tw
a , we find that the contribution of these ‘‘earl

birds’’ to 12C is a factor oftw
2am2/(11m) smaller than the

contribution computed above, Eq.~51!, and are thus negli-
gible in the largetw limit.

This simple estimate shows~i! why finite-time corrections
become large whena→0, ~ii ! that power-law corrections to

FIG. 15. Plot of the late time behavior ofP(tw1t,tw) versus
t/tw

n , and C(tw1t,tw) versust/tw , for tw5105 and 103, respec-
tively, andm50.5. Both correlation functions exhibit a power-la
behavior at large time, and the exponents agree well with the
dicted values2 1

2 and2
1
3 @see Eqs.~44! and~51!#. The correspond-

ing slopes are shown in dotted lines, as a guide to the eye.
8-13
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g(a,tw), as the one used for our extrapolation, are inde
expected and finally~iii ! justifies why thetw

n time scale does
not appear inC(tw1t,tw).

The late time behavior of the two correlation functio
can also be tested numerically. Fig. 15 showsP(tw1t,tw)
versust/tw

n , and C(tw1t,tw) versust/tw , for tw5105 and
103, respectively, andm50.5. The two correlation function
behave as power laws at large timet, and the exponents ar
in good agreement with those predicted by Eqs.~44! and
~51!, shown for comparison~with a arbitrary prefactor!, at
least for this particular value ofm. Note that since we do no
know the constantsg0 and g` , we cannot test the value
predicted for the prefactors.

Finally, an important point to mention is whether or n
this multiscaling behavior could be tested on mesura
quantities, in particular in a real system. Indeed, it would
interesting to know if response functions could be associa
in an unambiguous manner, to each of the correlation fu
tions C andP, and in such a case, if responses and corr
tions would scale in the same way witht and tw . Several
response functions could be proposed. One can, for insta
compute average probability current at timetw1t, given that
a small bias in the probability to go, say, to the right has b
applied at timetw . This response seems to have a well d
fined physical meaning; however, the way to relate it to
correlationC or P is not obvious. Another definition of the
response function, already introduced in the context of
fully connected trap model@13#, is to associate to each sit
in addition to the energy, a ‘‘magnetization’’ variablemi .
Assuming thatmi is independent from site to site and fro
the energyEi , C(tw1t,tw) appears to be the natural corr
lation of the magnetization

C~ tw1t,tw!5^m~ tw!m~ tw1t !&2^m~ tw!&^m~ tw1t !&,
~58!

wherem(t) is the magnetization of the system at timet, i.e.,
mi (t) . But in this framework, the meaning ofP is not clear.
Therefore, a careful study of this point is required, whi
will be done in a separate publication@46#.

VI. CONCLUSION

In this paper, we have studied in details the on
dimensional exponential trap model, which exhibit a pha
transition between a high temperature diffusive phase an
low temperature subdiffusive phase. We have obtained
merically and analytically the shape of the average diffus
front in the subdiffusive phase. Although based on an
proximation valid only near the dynamical transition, o
calculation provides several predictions on the asympt
shape of̂ p(x,t)&, which are in excellent agreement with th
numerics. It would be interesting to see whether these
dictions are actually exact.

The central result of this study concerns the localizat
properties. We have found that the dynamical participat
ratios are all finite, but different from their equilibrium coun
terparts, even allowing for the existence of an effective,
namical temperature. This is surprising because since e
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site is visited a very large number of times by the rand
walk, one could have expected that a partial equilibrium s
in within the limited region of space explored by the wal
Our detailed study of the distribution of dynamical weigh
shows that this is not the case. We have argued that this
be interpreted in terms of an effective ‘‘fragmentation’’ o
space in two half lines~or even three domains!, with a re-
stricted equilibrium within each region, independently of t
others.

Finally, we have studied two different two-time correl
tion functions, which exhibit different aging properties: on
P(tw1t,tw), is ‘‘subaging’’ whereas the other one,C(tw
1t,tw), shows ‘‘full aging.’’ We have given intuitive argu
ments and simple analytical approximations that account
these differences. We have obtained new predictions for
asymptotic~short-time and long-time! behavior of the scal-
ing function associated toC(tw1t,tw), which are found to
be in excellent agreement with the numerics. Since two ti
scales (tw

n and tw) appear in this model, one can wond
whether the short-time behavior ofC(tw1t,tw) exhibits a
nontrivial, multiple time scaling. A careful numerical inve
tigation of this issue leads to a negative answer, altho
strong finite time corrections are expected.

Since this one-dimensional model is currently of inter
to the mathematical community, we hope that the study p
sented here will motivate further rigorous research, and
some of our results, in particular concerning asymptotic
timates, can be proven to be exact.
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APPENDIX A: THE AVERAGE DIFFUSION FRONT

1. Formulation of the problem

The explicit calculation of̂ p(x,t)&t is reported is this
Appendix. Note that all the computations developed in A
pendix A and C are expected to be valid for the more gen
model where hopping is only constrained to have a fin
range ,hop , and in the long-time limit, i.e., whenj(t)
@,hop . It is not necessary here to restrict ourselves to
nearest neighbor hopping case. Two different averages
be introduced, the average over the random walks^•••&

W
,

and the average over the quenched trapping times^•••&t .
We consider here a slightly modified version of the model,
which the particle stays on a site a time exactly equal tot(x)
~continuous notations are used, so as to facilitate the cont
ous space limit! rather than exponentially distributed aroun
this value. We expect, and have checked numerically that
is irrelevant for the shape of^p(x,t)&t at long times.

For a given sample of the disorder~quenched trapping
times!, we can decompose the probabilityp(x,t) for the
walker to be on sitex at timet into a sum over the numbern
of steps
8-14
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p~x,t !5 (
n50

`

P~x,n;t !5 (
n50

`

^dxn ,xI ~ tn,t,tn11!&
W
,

~A1!

whereI (tn,t,tn11) is the characteristic function of the in
terval @ tn ,tn11#, equal to 1 oft belongs to this interval, and
0 otherwise. In order to simplify the notations, we introdu
I n(t)5I (tn,t,tn11). Now, averaging over the disorder,

^p~x,t !&t5 (
n50

`

^^dxn ,xI n~ t !&
W
&t . ~A2!

The key point is that we can permute the two averages,
perform first the average over the disorder for a given wa
Introducing the averagê•••&n,x over then steps walks end-
ing on sitex, we get

^p~x,t !&t5 (
n50

`

q~xun!^^I n~ t !&t&n,x , ~A3!

whereq(xun) is the standard probability for the random wa
to be on sitex after n steps

q~xun!5
1

A2pn
e2x2/2n ~A4!

for large n. Taking the temporal Laplace transformL of
^p(x,t)&t ,

^ p̂~x,s!&t5 (
n50

`

q~xun!^^ Î n~s!&t&n,x , ~A5!

which requires the calculation ofÎ n(s),

Î n~s!5E
tn

tn11
e2stdt5

1

s
e2stn@12e2s(tn112tn)#

Î n~s!.t~x!e2stn, ~A6!

sincetn112tn5t(x), andt(x) is at most of orders2n when
s→0, so thatst(x) should be small. For a given walkW
ending on sitex aftern steps, the timetn can be decompose
into a sum over the different visited sites,

tn5(
x8

NW~x8!t~x8!, ~A7!

whereNW(x8) is the number of visits of the sitex8 by the
walk W. Now Î n(s) can be averaged over the disorder

^ Î n~s!&t5^te2sNW(x)t&t )
x8Þx

^e2sNW(x8)t&t . ~A8!

Averages of the form̂e2at&t or ^te2at&t are easily calcu-
lated, in the limita→0,
02612
nd
.

^e2at&t5E
1

` mdt

t11m
e2at.12cam.e2cam

, ~A9!

^te2at&t52
]

]a
^e2at&t5cmam21e2cam

, ~A10!

with c5G(12m), so that^ Î n(s)&t reads

^ Î n~s!&t5cm@sNW~x!#m21expH 2csmF(
x8

NW~x8!mG J .

~A11!

Next, one has to average over all the walksW ending on site
x in n steps. Since this part is the hardest one of the ca
lation, one has to resort to a simple approximation sche
valid in the vicinity of some specific value ofm, namely,m
close to 1 in the following.

a. An approximation for µ\1

A simple approximation consists in performing the ave
age^•••&n,x of the right hand side of Eq.~A11! by replacing
NW(x8) with Nx(x8,n)5^NW(x8)&n,x :

^^ Î n~s!&t&n,x5K cm@sNW~x!#m21

3expH 2csmF(
x8

NW~x8!mG J L
n,x

.cm@sNx~x,n!#m21

3expH 2csmF(
x8

Nx~x8,n!mG J . ~A12!

This approximation is expected to be correct, at large tim
for m close to 1 (m,1), since it is exact form51. Note
however that form51, Eq. ~A9! is no longer valid, and
logarithmic corrections come into play. Turning toNx(x8,n),
it can be shown that for largen, a scaling relation holds:

Nx~x8,n!5AnFS x8

An
,

x

An
D ~A13!

with F(v,z) given by the following integral:

F~v,z!5
1

A2p
E

0

1 du

Asinpu
e2(v2zu)2/2 sinpu. ~A14!

The different factors in Eq.~A12! can then be evaluated:

(
x8

Nx~x8,n!m5E
2`

1`
AndvFAnFS v,

x

An
D Gm

5An11mGS x

An
D ~A15!
8-15
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introducingG(z)5*2`
1`F(v,z)mdv.

Nx~x,n!m215Anm21FS x

An
,

x

An
D m21

5Anm21HS x

An
D m21

~A16!

with H(v)5F(v,v). From Eq. ~A5!, a continuous space
limit can be obtained, introducing a continuous scaling va
ablel through the natural scaling relationn5lx2,

^ p̂~x,s!&t5x2E
0

`

dlF e21/2l

uxuA2pl
G

3Fcmsm21~ uxuAl!m21HS 1

Al
D m21G

3e2[csmuxu11mAl11mG(1/Al)] , ~A17!

where the parity ofG(z) andH(z) has been used. Groupin
together the factors, and introducing the scaling variableh
5uxu(11m)/ms, we get

^ p̂~x,s!&t5uxu1/m
mc

A2p
hm21E

0

`

dll (m/2)21

3HS 1

Al
D m21

e2(1/2l)2chml(11m)/2G(1/Al).

~A18!

Note that this expression is compatible with the expec
scaling form

^p~x,t !&t5
1

j
f S uxu

j D , ~A19!

where j is the dynamical length scale appearing in t
model,j;tm/(11m). One can indeed rewrite the previous r
lation in the following way:

^p~x,t !&t5
1

uxu
gS t

uxu(11m)/mD . ~A20!

Taking the Laplace transform with respect tot yields

^ p̂~x,s!&t5uxu1/mĝ~h!, ~A21!

whereĝ is the Laplace transform ofg, which is of the form
Eq. ~A18!. So one deduces that the scaling functionĝ(h) is
given by

ĝ~h!5
mc

A2p
hm21E

0

`

dll (m/2)21

3HS 1

Al
D m21

e2(1/2l)2chml(11m)/2G(1/Al).

~A22!
02612
i-

d

b. Asymptotic behavior of the scaling function f

Now we focus on the asymptotic behavior ofĝ(h) for
large h, which gives the spatial tails of the distributio
^p(x,t)&t . Whenh→`, the above integral is dominated b
the smalll region, which means that one needs to know
asymptotic largez behavior ofH(z) andG(z). After a few
lines of computations, we finally find

H~z!.
1

z
, G~z!.z12m, z→`. ~A23!

The largeh behavior ofĝ(h) can be then obtained from

ĝ~h!5
mc

A2p
hm21E

0

1`

dllm2~3/2!e2(1/2l)2chmlm
.

~A24!

The inverse Laplace transform can be computed usin
saddle-point method. One finally finds for the largeuxu be-
havior @or largeuzu, with z5xt2m/(11m)]

f ~z!' f `uzu(m21)/2e2buzu11m
~A25!

with

f `5AmG~12m!

2mp
, b522mG~12m!. ~A26!

One can also look at the limitz→0. Starting from Eq.
~A22!, we have to calculate the smallz behavior ofG(z) and
H(z), which is simple here since these function have a fin
limit in 0, denoted byg0(m) andh0, respectively as

g0~m!5E
2`

1`

dvS 1

A2p
E

0

1 du

Asinpu
expv2/~2 sinpu!D m

,

~A27!

h05
1

A2p
E

0

1 du

Asinp u
5

GS 1

4D 2

2p2
. ~A28!

So we have to compute the following integral:

ĝ~h!5
mc

A2p
h0

m21hm21E
0

`

dll (m/2)21

3e2(1/2l)2cg0(m)hml(11m)/2
. ~A29!

For h→0, this integral is dominated by the largel region.
We finally find

ĝ~h!5Ah21/(11m), h→0, ~A30!

with
8-16
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A5
1

A2p

2m

11m
G~12m!1/(11m)g0~m!2m/(11m)

3h0
m21GS m

11m D . ~A31!

Taking the inverse Laplace transform, this term gives
value of^p(x50,t)&t which is proportional tot2m/(11m). In
order to get the spatial dependence, the next term of
expansion must be computed. After a few changes of v
ables and asymptotic estimates, we get

f ~z!5 f 02 f 1uzum, z→0, ~A32!

with

f 05
2mh0

m21

~11m!A2p
g0~m!2m/(11m)

G~12m!1/(11m)GS m

11m D
GS 1

11m D ,

~A33!

f 15
2(12m)/2

Ap
h0

m21GS 12
m

2 D . ~A34!

The next subleading term can also be computed, and is fo
to be of orderz2 for m.1/2, andz112m for m,1/2.

APPENDIX B:

We give here some technical details about the numer
simulations. A numberNw of independent ‘‘walkers’’~or
‘‘particles’! are simulated one by one, for a given sample
the quenched energies$Ei%. A walk is simulated as follows:
the trapping time on sitei is chosen randomly from an ex
ponential distribution of meant i5exp(Ei /T), and the walker
then chooses at random between the two neighboring s
with equal probability. Then the desired quantity is compu
for this particular sample, and eventually averaged ove
numberNs of samples. Moreover, in order to facilitate com
parisons between different runs, we took each time the s
disorder samples, by choosing the same set of ‘‘seed’’ nu
bers. For out of equilibrium simulations, where the numb
of sitesL52N11 is supposed to be infinite, we used pe
odic boundary conditions, with usuallyN5103 except when
long times were required, in which caseN5104 was instead
considered@for instance in the computation ofYk(t)].

Error bars are estimated by running several simulati
with the sameNw and Ns , varying only the seed number
The fluctuations between the different runs leads to an e
mate of the standard deviation. The numbersNw andNs were
chosen so as to get small enough error bars, as far as
sible, taking into account the timet that we need to reach a
well as the computational time. It should be emphasized
the amplitude of the fluctuations depends a lot on the co
puted quantity. Correlations functions are easy to comp
andNw5Ns5103 is enough to get a relative standard dev
tion which is less than 1022. Quantities related to localiza
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tion properties fluctuate more; for integrated quantities l
the participation ratios, we tookNw5103 andNs5104 ~ex-
cept for small size systems, whereNw5Ns523103 was
used instead!, which was a good compromise in order
obtain both a good standard deviation~less than 1022) and
long enough times~for instancet5106 for m50.5). For dis-
tributions likew(P) and^p(x,t)&, one needs to average ove
a larger number of samples, in order to get smooth eno
curves~with fluctuations between different runs less than
31022). So w(P) was simulated usingNw5104 and Ns
5105, whereaŝ p(x,t)& was computed withNw5103 and
Ns5105. Note finally thatY2(,,t) was simulated usingNw
5105, andNs5103 ~except fort5106 and 107, whereNw
553104 and 104, respectively!, since we need a good sta
tistics on the sites with small trapping times so as to av
large fluctuations at small,.

APPENDIX C: CALCULATION OF THE PARTICIPATION
RATIOS

The analytical calculation ofY2(t) appears not to be eas
ily tractable, and the aim of this appendix is to argue for t
existence of a finite limitY2

dyn of Y2(t) when t→` for m
,1, and try to extract some information on the behavior
Y2

dyn as a function ofm, in particular form close to 1.
The participation ratioY2(t) is given by the integral

*2`
1`^p(x,t)2&t . The quantity^p(x,t)2&t can be computed

following the same lines as for^p(x,t)&t . It will be useful to
introduce a two-time quantityQ(x,t,t8) defined as

Q~x,t,t8!5^p~x,t !p~x,t8!&t . ~C1!

Defining R(t,t8)5*2`
` dx Q(x,t,t8), one has Y2(t)

5R(t,t), and turning to the Laplace transform

R̂~s,s8!5E
0

`

dtE
0

`

dt8e2st2s8t8R~ t,t8!. ~C2!

Now a reasonable assumption~that has been checked nu
merically! is that for larget andt8, t.t8, R(t,t8) becomes a
function of t/t8,

R~ t,t8!5Y2
dynRS t

t8
D . ~C3!

This follows from the similar behavior of the correlatio
functionC(t,t8) studied in Sec. V. It is interesting to restric
to the particular cases5s8,

R̂~s,s!52Y2
dynE

0

`

dt8E
t

8`dte2s(t1t8)RS t

t8
D

52Y2
dynE

0

`

dt8E
1

`

dut8e2st8(11u)R~u! ~C4!

or
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R̂~s,s!5
2Y2

dyn

s2 E
1

`

du
R~u!

~11u!2
. ~C5!

So a finite limit forY2(t) corresponds toR̂(s,s);s22, and
this is what we shall try to show in the following. Comin
back to Q(x,t,t8) and decomposing over the number
steps, one has

Q~x,t,t8!5 (
n,n8

p~x,n,t !p~x,n8,t8!. ~C6!

Averaging over the disorder yields

^Q~x,t,t8!&t5 (
n,n8

q~xun!q~xun8!

3^I ~ tn,t,tn11!

3I ~ tn8
8 ,t8,tn811

8 !&t,(n,x),(n8,x) . ~C7!

For given walksW andW8, and a given sequence oft i , let
us introduceK̂n,n8(s,s8) defined by

K̂n,n8~s,s8!5E
0

`

dtE
0

`

dt8I ~ tn,t,tn11!

3I ~ tn8
8 ,t8,tn811

8 !e2st2s8t8

.t~x!2e2stn2s8t
n8
8 ~C8!

assuming again thattn112tn5tn811
8 2tn8

8 5t(x) ~i.e., trap-
ping times are fixed rather than exponentially distribute!
and thatst(x) and s8t(x) are both much smaller than 1
which means that the maximum trapping time encountere
much smaller than the timest andt8 considered. Introducing
the following decomposition:

tn5(
y

NW~y,n!t~y!, ~C9!

tn8
8 5(

y
NW8~y,n8!t~y!, ~C10!

K̂n,n8(s,s8) reads

K̂n,n8~s,s8!5t~x!2e2[sNW(x,n)1s8NW8(x,n8)] t(x)

3)
yÞx

e2[sNW(y,n)1s8NW8(y,n8)] t(y).

~C11!

AveragingK̂n,n8(s,s8) over the disorder, one has
02612
is

^K̂n,n8~s,s8!&t5mG~22m!3@sNW~x,n!

1s8NW8~x,n8!#m22

3)
yÞx

e2c[sNW(y,n)1s8NW8(y,n8)] m
.

~C12!

One can now writeR̂(s,s) as

R̂~s,s!52mG~22m!(
x

(
n,n8

q~xun!q~xun8!sm22

3@NW~x,n!1NW8~x,n8!#m22expH 2csm

3(
y

@NW~y,n!1NW8~y,n8!#mJ . ~C13!

We now turn to continuous limit, and replace as in Append
A NW(y,n) by its average valueAnF(y/An,x/An). At this
stage we drop order unity constants since we shall m
several rather crude approximations in the following. Intr
ducing the new variableb throughn85bn, one gets

R̂~s,s!;sm22E
2`

`

dxE
1

`

dnE
1

` db

Ab
e2(x2/2n)(111/b)

3FAnHS x

An
D 1AbnHS x

Abn
D Gm22

3expH 2csmE
2`

`

dy nm/2FFS y

An
,

x

An
D

1AbFS y

Abn
,

x

Abn
D GmJ . ~C14!

Now, because of the factor 1/Ab, the integral overb is
dominated by the largeb behavior, which means that as
first step one can neglect terms likeF(y/An,x/An) com-
pared toAbF(y/Abn,x/Abn). Rescaling alsox andy using
the new variablesx̂5x/An and ŷ5y/Abn yields

R̂~s,s!;sm22E
2`

`

dx̂E
1

`

dbb (m23)/2E
1

`

dn n(m21)/2

3e2( x̂/2)(111/b)HS x̂

Ab
D m22

e2csm(bn)(11m)/2G( x̂/Ab).

~C15!

One can change variable in the last integral overn, letting
8-18
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n5
1

bs2m/(11m) F v

c GS x̂

Ab
D G

2/(11m)

. ~C16!

Then the integral overv becomes*0
`dve2v51 ~for s→0),

and R̂(s,s) reduces to

R̂~s,s!;
1

cs2E1

`db

b2E2`

`

dx̂e2( x̂/2)(111/b)

HS x̂

Ab
D m22

GS x̂

Ab
D .

~C17!

So this simplified calculation is consistent with a finiteY2
dyn

given by
d

.F
ss

rin

e

a-

d

02612
Y2
dyn}

1

G~12m!
E

1

`db

b2E2`

`

dx̂ e2( x̂/2)(111/b)

HS x̂

Ab
D m22

GS x̂

Ab
D ,

~C18!

where we have usedc5G(12m).
Since limz→0G(z)5g0(m)→1 when m→1 and

limz→0H(z)5h0 is independent ofm, the only strong depen
dence uponm comes fromG(12m), which suggests that

Y2
dyn;~12m!, m→0. ~C19!

This results is compatible with numerical data, and is co
parable to the corresponding result in equilibrium~in this
case,Y2

eq512m for all m,1). For 1,m,2, one can easily
show that, under the same assumptions,Y2(t);1/t (m21)/2

when t→`, whereasY2(t);1/At for m.2, which is the
expected result. Turning toY3, we have checked that th
same calculation also leads to a finite limit, and to a line
behavior with respect tom whenm→1.
.-P.
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